Stephen Hawking: sus propuestas sobre los agujeros negros

https://sm.mashable.com/mashable_in/seo/default/hawking-copy_4qf4.jpg

Los agujeros negros han cautivado a la comunidad científica y al público en general por décadas debido a sus misteriosas propiedades y su aparente violación de las leyes conocidas de la física. Fue en este contexto donde Stephen Hawking se posicionó como una de las figuras más influyentes, desarrollando propuestas revolucionarias que hoy determinan la base del estudio moderno sobre estos fascinantes objetos astronómicos. Su contribución abrió nuevas vías de investigación, situando a los agujeros negros en el centro del debate sobre los límites del conocimiento científico.

El dilema de la información: un comienzo

En los años setenta, Hawking abordó uno de los problemas más desconcertantes sobre los agujeros negros: la aparente desaparición de la información. Según la mecánica cuántica, la información sobre el estado inicial de un sistema no puede perderse, incluso tras transformarse. Sin embargo, bajo la entonces interpretación clásica de los agujeros negros basada en la teoría general de la relatividad de Einstein, cualquier cosa absorbida por el agujero negro, incluida la información sobre su estado cuántico, se pierde para siempre tras cruzar el llamado horizonte de eventos.

Hawking sugirió que este evento se podría entender como una paradoja de la información, un desacuerdo básico entre la gravedad y la mecánica cuántica. El avance de este tema no solo rompió con las normas establecidas, sino que también condujo a la elaboración de nuevas teorías y principios, como la teoría de la radiación de Hawking.

La radiación según Hawking: un cambio imprevisto

En 1974, Hawking sorprendió al mundo científico al sugerir que los agujeros negros no son completamente “negros”. Utilizando conceptos de la mecánica cuántica y la teoría cuántica de campos en espacios curvos, argumentó que cerca del horizonte de eventos pueden formarse pares de partículas y antipartículas. En ocasiones, una partícula cae en el agujero negro mientras que la otra escapa, emitiéndose como radiación detectable, hoy conocida como radiación de Hawking.

Este descubrimiento, que contradice el concepto básico de que nada puede salir de un agujero negro, sugiere que los agujeros negros no duran para siempre. Poco a poco, van perdiendo masa y energía, evaporándose con el tiempo hasta desaparecer por completo. Este fenómeno de evaporación indica que la materia y la energía que el agujero negro absorbió podrían eventualmente volver al universo, pero bajo la forma de radiación térmica.

Implicaciones de la radiación de Hawking

El planteamiento de Hawking fue tan disruptivo que generó un sinfín de debates y nuevas investigaciones. Desde el punto de vista teórico, la evaporación de los agujeros negros sugiere que la información podría perderse definitivamente, lo que sería una violación de los principios de la mecánica cuántica. Sin embargo, la mayoría de los físicos considera que debe existir algún mecanismo por el cual la información se conserve, si bien todavía no hay una respuesta definitiva.

Experimentos y observaciones astronómicas han buscado sin éxito identificar la radiación de Hawking, debido a que, para agujeros negros de masas estelares o superiores, dicha radiación es extremadamente tenue, mucho más baja que la radiación de fondo de microondas que llena el universo. Sin embargo, en entornos controlados se han hecho análogos acústicos y ópticos para imitar este fenómeno, ofreciendo indicios valiosos sobre la validez de la teoría.

Perspectivas innovadoras: la espuma cuántica y los pequeños agujeros negros

Con el tiempo, Hawking profundizó su trabajo sobre los límites cuánticos de los agujeros negros, colaborando en el desarrollo de conceptos como la espuma cuántica del espacio-tiempo y la posibilidad de micro agujeros negros en escalas subatómicas. Estas ideas son consideradas en teorías modernas como la gravedad cuántica de bucles y la teoría de cuerdas. Diversos experimentos en aceleradores de partículas han explorado la posibilidad de crear micro agujeros negros, un fenómeno que validaría la interrelación predicha por Hawking entre gravedad y cuántica.

La contribución de Hawking a la cosmología actual

Las contribuciones de Hawking no solo han cambiado la comprensión de los agujeros negros, sino que han acelerado el desarrollo de la física teórica moderna. Los desafíos que presentó, como la paradoja de la información y la naturaleza de la radiación de Hawking, motivaron a físicos, matemáticos y filósofos de la ciencia a reconsiderar las leyes fundamentales que gobiernan el universo. De este modo, el trabajo de Hawking se mantiene como un faro que sigue inspirando la búsqueda de una teoría unificada de la física, mientras los agujeros negros continúan generando preguntas sobre el origen, evolución y fin del cosmos.

Por Helena P. Corso

De interés